본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Bayesian Forecasting of China’s Housing Prices: Dynamic Factor Identification and Predictive Evaluation

이용수  0

영문명
발행기관
한국계량경제학회
저자명
Xia Gao
간행물 정보
『JOURNAL OF ECONOMIC THEORY AND ECONOMETRICS』Vol.36 No.3, 61~105쪽, 전체 45쪽
주제분류
경제경영 > 경제학
파일형태
PDF
발행일자
2025.09.30
8,200

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

This paper applies a Bayesian Variable Selection (BVS) framework to forecast the year-on-year growth rate of China’s newly built housing price index (HPI YoY). Using a broad set of macroeconomic and financial predictors, we implement a hierarchical BVS model with rolling-window estimation and direct multi-horizon forecasting. Out-of-sample performance is evaluated against autoregressive (AR) models, the random walk (RW), and a machine learning benchmark, the Random Forest (RF). The results show that BVS consistently outperforms AR and RW across most horizons in both point and density forecasts, and dominates RF within two years (h=1-18), while RF is only slightly better at very long horizons (h=24,30,36). Horizon-specific predictors provide further insights: lagged HPI and market sentiment (RECI) drive short-run dynamics; RECI, inflation (CPI), and housing credit conditions (HPF, IHLL) matter at medium to long horizons; and demographic fundamentals (PNGR) dominate at long and ultra-long horizons. The forecast results point to a subdued housing market over the next two years, consistent with a structural break around April 2022 and the lasting impact of demographic shifts. Overall, the study demonstrates that BVS not only improves forecasting accuracy but also enhances interpretability, making it a valuable tool for academic research and housing market policy design.

영문 초록

목차

1. INTRODUCTION
2. BAYESIAN VARIABLE SELECTION MODEL
3. DISTRIBUTION PREDICTION USING BVS MODEL
4. DATA AND PREDICTOR VARIABLES
5. EMPIRICAL ANALYSIS
6. BAYESIAN VARIABLE SELECTION COMPARISON WITH RANDOM FOREST
7. ROBUSTNESS ANALYSIS: STRUCTURAL BREAK IN NATIONAL HOUSING PRICES
8. CONCLUSION AND POLICY IMPLICATIONS
REFERENCES

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Xia Gao. (2025).Bayesian Forecasting of China’s Housing Prices: Dynamic Factor Identification and Predictive Evaluation. JOURNAL OF ECONOMIC THEORY AND ECONOMETRICS, 36 (3), 61-105

MLA

Xia Gao. "Bayesian Forecasting of China’s Housing Prices: Dynamic Factor Identification and Predictive Evaluation." JOURNAL OF ECONOMIC THEORY AND ECONOMETRICS, 36.3(2025): 61-105

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제