본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Predicting Hotel Economic Trends Using Machine Learning and Time Series Analysis Models

이용수  0

영문명
발행기관
한국비교정부학회
저자명
이규태(Gyu Tae Lee) 장호성(Ho Sung Chang)
간행물 정보
『한국비교정부학보』제29권 제2호, 85~106쪽, 전체 22쪽
주제분류
사회과학 > 행정학
파일형태
PDF
발행일자
2025.06.30
5,440

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

(Purpose) The purpose of this study is to construct a time-series forecast model for the hotel service production index using the ARIMA model to predict the hotel industry's economic trend, and to analyze its long-term growth and short-term volatility. This study aims to help hotel executives make strategic decisions to effectively respond to a rapidly changing market environment. (Design/methodology/approach) This study constructed the ARIMA model using 16 years of time-series data provided by KOSIS and the Korea Hotel Association. Through this, the service production index forecast of the hotel industry was carried out, and various statistical indicators were used to evaluate the accuracy of the forecast model. In addition, the prediction results were revalidated using various test datasets to improve the model's performance. (Findings) The ARIMA model has shown a high degree of suitability as a tool that can accurately predict not only the long-term growth trends of the hotel industry, but also short-term volatility. In particular, it was confirmed that the model can respond effectively in the event of unexpected economic shocks such as COVID-19. It provides a strategic foundation for hotel management to respond nimbly to market changes.. (Research implications or Originality) In order to overcome the limitations of the time-series prediction model, this study developed a prediction model optimized for the hotel industry by comparing and analyzing machine learning techniques. In addition, customized forecasting models that can be applied to other service industries will be presented to provide basic data for related research.

영문 초록

목차

Ⅰ. Introduction
Ⅱ. Theoretical Background
Ⅲ. Methodology
Ⅳ. Results
Ⅴ. Conclusion and Implications
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

이규태(Gyu Tae Lee),장호성(Ho Sung Chang). (2025).Predicting Hotel Economic Trends Using Machine Learning and Time Series Analysis Models. 한국비교정부학보, 29 (2), 85-106

MLA

이규태(Gyu Tae Lee),장호성(Ho Sung Chang). "Predicting Hotel Economic Trends Using Machine Learning and Time Series Analysis Models." 한국비교정부학보, 29.2(2025): 85-106

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제