본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Korean visual abductive reasoning: AI Language Model’s ability to understand plausibility

이용수  42

영문명
Korean visual abductive reasoning: AI Language Model’s ability to understand plausibility
발행기관
경희대학교 언어정보연구소
저자명
한선아(Seonah Han) 원종빈(Jongbin Won) 권은재(Eunjae Kwon) 송상헌(Sanghoun Song)
간행물 정보
『언어연구』제41권 제2호, 283~310쪽, 전체 28쪽
주제분류
인문학 > 언어학
파일형태
PDF
발행일자
2024.06.30
6,160

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Visual abductive reasoning is the logical process of drawing the most plausible hypothesis based on given observations. This ability is fundamental to artificial intelligence because it enables inference from incomplete information. However, little research has been conducted on Korean visual abductive reasoning. To examine the capability of a multimodal language model’s Korean visual abductive reasoning, we set a simple baseline model and analyzed how it numerically estimated the plausibility for all Korean hypothesis sentences through a multiple-choice task. This task was implemented using a simple dual encoder model and the Korean Story Cloze dataset. After fine-tuning with the binary-choice task discriminating the plausible hypothesis from the implausible one, our baseline model shows an accuracy of 79.81%. In multiple-choice task designed to check for the influence of overfitting or annotation artifacts, the model estimated the plausibilities of four options in the order of Groundtruth≃ Plausible>Implausible≫Random. We also conducted experiments to analyze how the model performed Korean visual abductive reasoning. It was observed that the model made little use of the observation before the hypothesis but demonstrated a similar tendency to humans, struggling with data samples which humans also struggle with when evaluating the plausibility of given sentences. Our study sets a research foundation for numerically analyzing and understanding the language models’ visual abductive reasoning ability in the Korean context. It also shows both the potential and limitations of the language model’s Korean visual abductive reasoning ability and provides clues for future research directions.

영문 초록

목차

1. Introduction
2. Theoretical background
3. Methods
4. Results
5. Experiments
6. Discussion
7. Conclusion
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

한선아(Seonah Han),원종빈(Jongbin Won),권은재(Eunjae Kwon),송상헌(Sanghoun Song). (2024).Korean visual abductive reasoning: AI Language Model’s ability to understand plausibility. 언어연구, 41 (2), 283-310

MLA

한선아(Seonah Han),원종빈(Jongbin Won),권은재(Eunjae Kwon),송상헌(Sanghoun Song). "Korean visual abductive reasoning: AI Language Model’s ability to understand plausibility." 언어연구, 41.2(2024): 283-310

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제