본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Predicting Functional Outcomes of Patients With Stroke Using Machine Learning: A Systematic Review

이용수  66

영문명
머신러닝을 활용한 뇌졸중 환자의 기능적 결과 예측: 체계적 고찰
발행기관
대한신경계작업치료학회
저자명
배수영 Lee, Mi Jung 남상훈 홍익표
간행물 정보
『재활치료과학』제11권 제4호, 23~39쪽, 전체 17쪽
주제분류
의약학 > 의학일반
파일형태
PDF
발행일자
2022.11.30
4,840

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

목적 : 본 연구는 뇌졸중 환자의 기능적 결과를 예측하기 위한 인구통계학적 및 임상학적 특징과 머신러닝의 사용을 체계적으로 분석하고 요약하기 위해 수행되었다. 연구방법 : PubMed, CINAHL과 Web of Science를 사용하여 2010년부터 2021년 사이에 게재된 연구를검색하였다. 주요 검색어는 “machine learning OR data mining AND stroke AND function OR prediction OR/AND rehabilitation”을 사용하였다. 뇌 이미지 처리 기법만을 분석한 연구, 딥러닝만적용한 연구와 전체 본문을 열람할 수 없는 연구는 제외되었다. 결과 : 검색한 결과, 총 9편의 국내외 논문을 선정했다. 선정된 논문에서 가장 많이 사용된 머신러닝알고리즘은 서포트 벡터 머신(support vector machine, 19.05%)과 랜덤포레스트(random forest, 19.05%)였다. 9개 중 7개의 연구에서 뇌졸중 환자의 기능을 예측하기 위해 중요하다고 추출된 변수를결과로 제시했다. 그 결과, 5개(55.56%)의 연구에서 뇌졸중 환자의 기능을 예측하기 위해 환자의 임상적특성이 아닌 modified ranking scale (mRS) 및 functional independence measure (FIM)과 같은 초기또는 퇴원 평가 점수가 중요하다고 도출되었다. 결론 : 이 연구는 mRS 및 FIM과 같은 뇌졸중 환자의 초기 또는 퇴원 평가 점수가 임상적 특성보다기능적 결과에 더 많은 영향을 미칠 수 있음을 나타냈다. 따라서, 뇌졸중 환자의 기능적 결과를 향상시키기 위한 최적의 중재를 개발하고 적용하기 위해서는 뇌졸중 환자의 초기 및 퇴원 시 기능적 결과를평가하고 검토하는 것이 필요하다.

영문 초록

Objective : To summarize clinical and demographic variables and machine learning uses for predicting functional outcomes of patients with stroke. Methods : We searched PubMed, CINAHL and Web of Science to identify published articles from 2010 to 2021. The search terms were “machine learning OR data mining AND stroke AND function OR prediction OR/AND rehabilitation”. Articles exclusively using brain imaging techniques, deep learning method and articles without available full text were excluded in this study. Results : Nine articles were selected for this study. Support vector machines (19.05%) and random forests (19.05%) were two most frequently used machine learning models. Five articles (55.56%) demonstrated that the impact of patient initial and/or discharge assessment scores such as modified ranking scale (mRS) or functional independence measure (FIM) on stroke patients’ functional outcomes was higher than their clinical characteristics. Conclusions : This study showed that patient initial and/or discharge assessment scores such as mRS or FIM could influence their functional outcomes more than their clinical characteristics. Evaluating and reviewing initial and or discharge functional outcomes of patients with stroke might be required to develop the optimal therapeutic interventions to enhance functional outcomes of patients with stroke.

목차

Ⅰ. Introduction
Ⅱ. Methods
Ⅲ. Results
Ⅳ. Discussion
Ⅴ. Conclusion
Acknowledgment
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

배수영,Lee, Mi Jung,남상훈,홍익표. (2022).Predicting Functional Outcomes of Patients With Stroke Using Machine Learning: A Systematic Review. 재활치료과학, 11 (4), 23-39

MLA

배수영,Lee, Mi Jung,남상훈,홍익표. "Predicting Functional Outcomes of Patients With Stroke Using Machine Learning: A Systematic Review." 재활치료과학, 11.4(2022): 23-39

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제