본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Artificial intelligence for intraoperative neuromonitoring: signal interpretation, risk prediction, and clinical translation

이용수  0

영문명
발행기관
대한신경모니터링학회
저자명
Yong Seok Lee Seung Hoon Woo
간행물 정보
『Journal of Neuromonitoring & Neurophysiology』Vol.5 No.2, 75~87쪽, 전체 13쪽
주제분류
의약학 > 일반외과학
파일형태
PDF
발행일자
2025.11.30
4,360

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

This reviews how artificial intelligence and machine learning reshape intraoperative neuromonitoring for thyroid and head and neck surgery with emphasis on protecting the recurrent laryngeal nerve. We synthesize four methodological strands including end-to-end deep learning on electromyography, classical machine learning with engineered features, motor evoked potential analytics, and computer vision for nerve localization. We map inputs, model classes, and objectives, and compare recurrent laryngeal nerve palsy prediction pipelines that use intraoperative electromyography trend dynamics, registry-based clinical ensembles, and voice spectrogram-derived outcomes. For real-time safety, we contrast threshold-based alerts with machine learning detectors and hybrid systems, and we highlight interpretability, acquisition to alert latency, and robustness to artifacts. Evidence includes prospective evaluations within operating room workflows, yet gaps remain in external validation and generalization across sites. We outline deployment principles that include calibrated graded alerts, standardized visualization, and surgeon-in-the-loop operation aligned with Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence (SPIRIT-AI), the Consolidated Standards of Reporting Trials–Artificial Intelligence (CONSORT-AI), and Developmental and Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intelligence (DECIDE-AI). Together these elements enable earlier and more reliable detection and risk stratification while preserving clinical transparency.

영문 초록

목차

Introduction
Background: Fundamentals of Intraoperative Neuromonitoring and Current Limitations
Artificial Intelligence and Machine Learning in Intraoperative Neuromonitoring Signal Interpretation
Recurrent Laryngeal Nerve Palsy Prediction Models
Automated Loss of Signal Detection and Real-Time Alerts
Clinical Translation and Integration Roadmap
Conclusion and Future Directions
Funding
Conflict of Interest
Data Availability
Author Contributions
ORCID
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Yong Seok Lee,Seung Hoon Woo. (2025).Artificial intelligence for intraoperative neuromonitoring: signal interpretation, risk prediction, and clinical translation. Journal of Neuromonitoring & Neurophysiology, 5 (2), 75-87

MLA

Yong Seok Lee,Seung Hoon Woo. "Artificial intelligence for intraoperative neuromonitoring: signal interpretation, risk prediction, and clinical translation." Journal of Neuromonitoring & Neurophysiology, 5.2(2025): 75-87

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제