본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Comparative Assessment of YOLO Segmentation Extensions for Intelligent Fire Detection

이용수  0

영문명
발행기관
한국화재소방학회
저자명
Sugi Choi Heejun Kwon Jiwon Choi Sangwon Lee Haiyoung Jung
간행물 정보
『International Journal of Fire Science and Engineering』Vol. 39, No. 3, 26~36쪽, 전체 11쪽
주제분류
공학 > 공학일반
파일형태
PDF
발행일자
2025.09.30
4,120

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

With the growing frequency of fire incidents, the demand for rapid and accurate fire detection technologies has become increasingly critical. In this study, we evaluate segmentation-based object detection models YOLO (You Only Look Once) v5-seg, YOLOv8-seg, and YOLOv11-seg for their ability to detect flames and smoke under identical experimental conditions. A total of 5,000 fire images were collected and split into training, validation, and test datasets. The same hardware environment and hyperparameter settings were used for model training to ensure a fair comparison. The experimental results reveal that YOLOv11-seg achieved the best overall performance, with a Precision of 0.710, Recall of 0.570, F1-score of 0.632, and mAP (mean Average Precision) 50 of 0.600. Notably, YOLOv11-seg achieved the highest Recall and mAP values for smoke detection, underscoring its effectiveness in identifying smoke—a critical factor for early fire detection. In terms of efficiency, YOLOv8-seg demonstrated the fastest inference speed, while YOLOv5-seg offered advantages in lightweight model size. However, YOLOv11-seg provided a balanced trade-off between computational cost and detection accuracy, making it the most suitable model for real-world fire response scenarios. Accordingly, this study proposes YOLOv11-seg as a robust baseline model for segmentation-based fire detection and provides a foundational reference for future research on deep learning-driven intelligent fire video analysis.

영문 초록

목차

1. Introduction
2. Real-time object detection model
3. Experiment
4. Experiment Results
5. Conclusions
Author Contributions
Conflicts of Interest
Acknowledgments
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Sugi Choi,Heejun Kwon,Jiwon Choi,Sangwon Lee,Haiyoung Jung. (2025).Comparative Assessment of YOLO Segmentation Extensions for Intelligent Fire Detection. International Journal of Fire Science and Engineering, 39 (3), 26-36

MLA

Sugi Choi,Heejun Kwon,Jiwon Choi,Sangwon Lee,Haiyoung Jung. "Comparative Assessment of YOLO Segmentation Extensions for Intelligent Fire Detection." International Journal of Fire Science and Engineering, 39.3(2025): 26-36

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제