학술논문
Improving Chili Pepper Seed Germination Rates through Deep Learning Using Macroscopic Images
이용수 10
- 영문명
- 발행기관
- 한국컴퓨터게임학회
- 저자명
- Soo-Kyung Moon Changyu-Ao Seung-Eon Jeong Dae-Won Park Youn-Mo Soung Man-Sung Kwen Uk Cho Dae-In Kang Sung-Ho Jung Gwang-Jun Kim
- 간행물 정보
- 『한국컴퓨터게임학회논문지』제38권 1호, 106~115쪽, 전체 10쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2025.03.31

국문 초록
Germination of chili pepper seeds is critical for crop yield and resource utilization. A high germination rate increases yield and effectively reduces resource wastage. This study collected 450 macroscopic images of chili pepper seeds and constructed a dataset for deep learning training through standardized germination experiments. Six deep learning models were evaluated to improve the chili pepper seed classification accuracy and germination rate. After comparing the performance of the models, MobileNet_v2 performed the best, not only having the fewest number of parameters but also achieving a 98.89% accuracy and 97.82% F1 score. The model improved the original germination rate from 87.33% to 100% on the test set, significantly optimizing the seed selection process
영문 초록
목차
1. Introduction
2. Related Work
3. Materials and Methods
4. Results and Discussion
5. Conclusion And Future Work
참고문헌
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
