- 영문명
- Evolutionary neural network model for recognizing strategic fitness of a finished Tic-Tac-Toe game
- 발행기관
- 한국컴퓨터게임학회
- 저자명
- 이병두(Byung Doo Lee)
- 간행물 정보
- 『한국컴퓨터게임학회논문지』제28권 2호, 95~101쪽, 전체 7쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2015.06.30

국문 초록
영문 초록
Evolutionary computation is a powerful tool for developing computer games. Back-propagation neural network(BPNN) was proved to be a universal approximator and genetic algorithm(GA) a global searcher.
The game of Tic-Tac-Toe, also known as Naughts and Crosses, is often used as a test bed for testing new AI algorithms. We tried to recognize the strategic fitness of a finished Tic-Tac-Toe game when the parameters, such as a sequence of moves, its game depth and result, are provided. To implement this, we've constructed an evolutionary model using GA with back-propagation NNs(GANN).
The experimental results revealed that GANN, in the very long training time, converges very slowly; however, performance of recognizing the strategic fitness does not meet we expected and, further, increase of the population size does not significantly contribute to the performance of GANN.
목차
ABSTRACT
1. 서론
2. 관련 연구
3. 본론
4. 결론
참고문헌
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
