- 영문명
- Musical Instruments Sounds Classification based on Rough Set Analysis
- 발행기관
- 한국컴퓨터게임학회
- 저자명
- 유재만(Jae Man You) 박인규(In Kyoo Park)
- 간행물 정보
- 『한국컴퓨터게임학회논문지』제26권 4호, 67~73쪽, 전체 7쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2013.12.30

국문 초록
영문 초록
Data mining and game sounds classification prerequisite to find a compact but effective set of features in the overall problem-solving process. As a preprocessing step of data mining, feature selection has tuned to be very efficient in reducing its dimensionality and removing irrelevant data at hand. In this paper we cast a feature selection problem on rough set theory and a conditional entropy in information theory and present an empirical study on feature analysis for classical instrument classification. An new definition of a significance of each feature using rough set theory based on rough entropy is proposed. Our results suggest that further feature analysis research is necessary in order to optimize feature selection and achieve better results for the musical instrument sound classification problem through Weka’s classifiers. The results show that the performance of the best 17 selected features among 37 features has 3.601 compared to 2.332 in standard deviation and 94.667 compared to 96.935 in average with four classifiers.
목차
1. 서론
2. 엔트로피상의 특징추출
3. 특징점 추출 알고리즘
4. 실험 및 결과고찰
5 결 론
참고문헌
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
