학술논문
Modeling Differential Global Positioning System Pseudorange Correction
이용수 3
- 영문명
- 발행기관
- 한국항해항만학회
- 저자명
- M.Mohasseb A.El-Rabbany O.Abd El-Alim R.Rashad
- 간행물 정보
- 『한국항해항만학회 학술대회논문집』2006년도 International Symposium on GPS/GNSS Vol.1, 1~6쪽, 전체 6쪽
- 주제분류
- 공학 > 해양공학
- 파일형태
- 발행일자
- 2006.10.24

국문 초록
영문 초록
This paper focuses on modeling and predicting differential GPS corrections transmitted by marine radio-beacon systems using artificial neural networks. Various neural network structures with various training algorithms were examined, including Linear, Radial Biases, and Feedforward. Matlab Neural Network toolbox is used for this purpose. Data sets used in building the model are the transmitted pseudorange corrections and broadcast navigation message. Model design is passed through several stages, namely data collection, preprocessing, model building, and finally model validation. It is found that feedforward neural network with automated regularization is the most suitable for our data. In training the neural network, different approaches are used to take advantage of the pseudorange corrections history while taking into account the required time for prediction and storage limitations. Three data structures are considered in training the neural network, namely all round, compound, and average. Of the various data structures examined, it is found that the average data structure is the most suitable. It is shown that the developed model is capable of predicting the differential correction with an accuracy level comparable to that of beacon-transmitted real-time DGPS correction.
목차
1. Introduction
2. PRC Variability
3. Neural Network Modeling
4. Results and Discussion
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
