본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Optimizing Suicide Risk Prediction in Korea: A Comparison of Model Performance Using Resampling Methods and Machine Learning Algorithms

이용수  0

영문명
발행기관
대한신경정신의학회
저자명
Eunji Lim Bong-Jo Kim Boseok Cha So-Jin Lee Jae-Won Choi Nuree Kang Soyoung Park Sung Hyo Seo Dongyun Lee
간행물 정보
『Psychiatry Investigation』제22권 제11호, 1309~1318쪽, 전체 10쪽
주제분류
의약학 > 정신과학
파일형태
PDF
발행일자
2025.11.30
4,000

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Objective: Machine learning (ML) can assist in predicting suicide risk and identifying associated risk factors. Various resampling methods and algorithms must be applied to develop an ML prediction model with better performance. In this study, we developed an optimal Korean suicide prediction model by applying five ML algorithms, unsampled data, and two resampling methods. Methods: In this study, data from the Korea National Health and Nutrition Examination Survey for 2017, 2019, and 2021 were integrated and analyzed to predict suicidal ideation in subjects aged ≥19 years. Logistic regression, random forest (RF), k-nearest neighbor, gradient boosting, and adaptive boosting were used as ML algorithms. Undersampling and oversampling are used as resampling methods to solve data imbalance problems. Results: Among the study participants, 16,947 (95.14%) and 866 (4.86%) belonged to the control and suicidal ideation groups, respectively. Among the 15 ML models, the RF model exhibited excellent performance (sensitivity=0.781, area under the curve=0.870) in an algorithm trained with undersampled data. Conclusion: Developing an optimized Korean suicide prediction model through additional validation based on the ML model developed in this study will help predict suicide risk factors caused by the interaction of individual, social, and environmental factors.

영문 초록

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION
Supplementary Materials
Availability of Data and Material
Conflicts of Interest
Author Contributions
ORCID iDs
Funding Statement
Acknowledgments
REFERENCES

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Eunji Lim,Bong-Jo Kim,Boseok Cha,So-Jin Lee,Jae-Won Choi,Nuree Kang,Soyoung Park,Sung Hyo Seo,Dongyun Lee. (2025).Optimizing Suicide Risk Prediction in Korea: A Comparison of Model Performance Using Resampling Methods and Machine Learning Algorithms. Psychiatry Investigation, 22 (11), 1309-1318

MLA

Eunji Lim,Bong-Jo Kim,Boseok Cha,So-Jin Lee,Jae-Won Choi,Nuree Kang,Soyoung Park,Sung Hyo Seo,Dongyun Lee. "Optimizing Suicide Risk Prediction in Korea: A Comparison of Model Performance Using Resampling Methods and Machine Learning Algorithms." Psychiatry Investigation, 22.11(2025): 1309-1318

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제