본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

잠재적인 피부과민성 유발물질 선별을 위한 딥러닝 기반 KeratinoSens™ 활성 예측모델 개발

이용수  0

영문명
Development of a Deep Learning-Based Model to Predict KeratinoSens™ Activity for Screening Potential Skin Sensitizers
발행기관
한국환경보건학회
저자명
이수진(Sujin Lee) 박종서(Jongseo Park) 강경희(Kyounghee Kang) 한상문(Sangmoon Han) 김선미(Sunmi Kim) 서명원(Myungwon Seo)
간행물 정보
『한국환경보건학회지』제51권 제3호, 137~148쪽, 전체 12쪽
주제분류
공학 > 환경공학
파일형태
PDF
발행일자
2025.06.30
4,240

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Background: Skin sensitization is a common dermatological condition, and it is crucial to effectively evaluate potential sensitizers. Comprising four key events, the adverse outcome pathway (AOP) framework used by the OECD systematically describes the mechanism of skin sensitization. With the global shift away from animal testing, alternative testing methods have gained increasing importance. Among them, KeratinoSensTM is considered a key in vitro assay for evaluating KE2, the activation of keratinocytes. However, it is impractical to assess every chemical substance experimentally, which highlights the need for efficient in silico prediction approaches. Objectives: This study aims to analyze methodologies for developing predictive models for KeratinoSensTM activation. We compare algorithms and molecular descriptors to propose a highly accurate prediction model. Methods: We collected and curated a dataset with KeratinoSensTM assay results through a literature review. Predictive models were developed by combining machine learning and deep learning algorithms with diverse molecular descriptors. Model performance was evaluated using five-fold cross-validation using multiple evaluation metrics, and PCA and UMAP were applied to data distribution analysis and identification of prediction error patterns. Results: The GCN and DNN models presented superior predictive performance compared to other machine learning-based models. The GCN model, in particular, achieved an average ROC-AUC of 0.80, indicating a strong learning capability from molecular structures. PCA and UMAP analyses confirmed that the GCN model effectively captured structural differences between datasets. However, prediction errors were observed for structurally novel compounds, likely due to the limited dataset size. Conclusions: This study highlights the GCN model's strong performance in predicting KE2 events within the AOP framework, underscoring its potential as a pre-screening tool for identifying skin sensitizers. Expanding the dataset could further improve its generalizability for efficient skin sensitization assessment.

영문 초록

목차

Ⅰ. 서 론
Ⅱ. 재료 및 방법
Ⅲ. 결과 및 고찰
Ⅳ. 결 론
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

이수진(Sujin Lee),박종서(Jongseo Park),강경희(Kyounghee Kang),한상문(Sangmoon Han),김선미(Sunmi Kim),서명원(Myungwon Seo). (2025).잠재적인 피부과민성 유발물질 선별을 위한 딥러닝 기반 KeratinoSens™ 활성 예측모델 개발. 한국환경보건학회지, 51 (3), 137-148

MLA

이수진(Sujin Lee),박종서(Jongseo Park),강경희(Kyounghee Kang),한상문(Sangmoon Han),김선미(Sunmi Kim),서명원(Myungwon Seo). "잠재적인 피부과민성 유발물질 선별을 위한 딥러닝 기반 KeratinoSens™ 활성 예측모델 개발." 한국환경보건학회지, 51.3(2025): 137-148

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제