본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

감염병 위기에서 AI는 어떻게 사용되었는가: COVID-19 연구동향 분석

이용수  0

영문명
Artificial Intelligence during a Public Health Crisis: A Trend Analysis of COVID-19 Research
발행기관
한국환경보건학회
저자명
최성혜(Sunghye Choi) 이창길(Chang Kil Lee) 김도형(Dohyeong Kim)
간행물 정보
『한국환경보건학회지』제51권 제3호, 109~128쪽, 전체 20쪽
주제분류
공학 > 환경공학
파일형태
PDF
발행일자
2025.06.30
5,200

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Background: The COVID-19 pandemic prompted a surge in artificial intelligence (AI) research with health- related applications, including diagnosis, forecasting, and policy evaluation. While many reviews have summarized model performance, few have examined the structural relationships between research aims, data types, and algorithm selection. Objectives: This study presents a narrative review of AI-based COVID-19 research, focusing on how algorithm choices evolved across different functional goals—clinical diagnosis and treatment, infection forecasting, and public health or policy response—and how these choices were shaped by data characteristics and different phases of the pandemic. Methods: We reviewed 108 peer-reviewed English-language studies published between 2020 and 2024. Each study was categorized by functional objective and analyzed in terms of AI methods used, data types and sources, geographic focus, and modeling strategies. Both quantitative trends and qualitative insights were synthesized. Results: Convolutional neural networks, support vector machines, and random forests were frequently used and showed broad applicability. Algorithm selection aligned closely with data types: deep learning was dominant in image-based tasks, while structured data often employed tree-based or logistic models. Over time, reliance on public case data declined, while the use of clinical and policy datasets increased. Supervised learning approaches remained dominant, although unsupervised methods were used for sentiment analysis and clustering. Modeling patterns varied significantly by research purpose, reflecting the structural match between methodological design and data context. Conclusions: AI use in COVID-19 research evolved with changing data environments and research needs. Algorithm choice reflected not only technical capacity, but also alignment with functional objectives and data structures. This narrative review provides guidance for the future development of AI-based tools in public health emergencies.

영문 초록

목차

Ⅰ. 서 론
Ⅱ. 재료 및 방법
Ⅲ. 결 과
Ⅳ. 고 찰
Ⅴ. 결 론
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

최성혜(Sunghye Choi),이창길(Chang Kil Lee),김도형(Dohyeong Kim). (2025).감염병 위기에서 AI는 어떻게 사용되었는가: COVID-19 연구동향 분석. 한국환경보건학회지, 51 (3), 109-128

MLA

최성혜(Sunghye Choi),이창길(Chang Kil Lee),김도형(Dohyeong Kim). "감염병 위기에서 AI는 어떻게 사용되었는가: COVID-19 연구동향 분석." 한국환경보건학회지, 51.3(2025): 109-128

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제