본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

안전한 화학제품 설계를 위한 딥러닝 기반 화학물질 기능 및 용도 예측모델 개발

이용수  2

영문명
Development of a Deep Learning-Based Model for Predicting Functions and Applications of Chemicals to Support Safe-by-Design Chemical Products
발행기관
한국환경보건학회
저자명
박종서(Jongseo Park) 이수진(Sujin Lee) 김선미(Sunmi Kim) 강경희(Kyounghee Kang) 한상문(Sangmoon Han) 서명원(Myungwon Seo)
간행물 정보
『한국환경보건학회지』제51권 제2호, 62~75쪽, 전체 14쪽
주제분류
공학 > 환경공학
파일형태
PDF
발행일자
2025.04.30
4,480

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

Background: The variety of chemicals used in chemical products and industries and their applications have expanded with the advancement of science and technology. Since chemicals have different human exposure routes depending on their applications, understanding the function and application of chemicals is essential for safety and risk assessments. However, identifying the diverse functions of chemicals through experiments can be challenging due to the large number of chemicals involved. Objectives: This study aims to develop a deep learning-based predictive model for estimating the functions and applications of chemicals in products. Methods: We trained the model using the US EPA CPDat database, which includes data on various chemicals and their uses. The model’s performance was evaluated using both data-based and product-based validation. The model was trained and tested on curated datasets in data-based validation. For the product-based validation, a real-world chemical product was selected and the predicted functional uses of its constituent chemicals were compared to their actual applications. Results: In the data-based validation, the model achieved an AUC-ROC of 0.95 and an average F1-score of 0.68 across all functional uses. In a product-based validation focusing on a bleaching product, the model accurately predicted the functional uses of 87.5% of its constituent chemicals. The predicted functional uses were also mapped to chemical product categories, demonstrating the model’s applicability in chemical product development processes. Conclusions: The model showed strong predictive performance in both data-based and product-based validation, highlighting its potential to predict the functions and applications of chemicals. The developed model will help with the identification and design of chemicals with specific functions and applications and can be used in the Safe-by-Design (SbD) approach to developing chemical products.

영문 초록

목차

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

박종서(Jongseo Park),이수진(Sujin Lee),김선미(Sunmi Kim),강경희(Kyounghee Kang),한상문(Sangmoon Han),서명원(Myungwon Seo). (2025).안전한 화학제품 설계를 위한 딥러닝 기반 화학물질 기능 및 용도 예측모델 개발. 한국환경보건학회지, 51 (2), 62-75

MLA

박종서(Jongseo Park),이수진(Sujin Lee),김선미(Sunmi Kim),강경희(Kyounghee Kang),한상문(Sangmoon Han),서명원(Myungwon Seo). "안전한 화학제품 설계를 위한 딥러닝 기반 화학물질 기능 및 용도 예측모델 개발." 한국환경보건학회지, 51.2(2025): 62-75

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제