본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

The Study on Visualizing the Impact of Filter Bubbles on Social Media Networks

이용수  104

영문명
The Study on Visualizing the Impact of Filter Bubbles on Social Media Networks
발행기관
한국인공지능학회
저자명
진성환(Sung-hwan JIN) 한동훈(Dong-hun HAN) 강민수(Min-soo KANG)
간행물 정보
『인공지능연구』Vol.12 No. 2, 9~16쪽, 전체 8쪽
주제분류
복합학 > 과학기술학
파일형태
PDF
발행일자
2024.06.30
무료

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

영문 초록

In this study, we delve into the effects of personalization algorithms on the creation of “filter bubbles,” which can isolate individuals intellectually by reinforcing their pre-existing biases, particularly through personalized Google searches. By setting up accounts with distinct ideological learnings—progressive and conservative—and employing deep neural networks to simulate user interactions, we quantitatively confirmed the existence of filter bubbles. Our investigation extends to the deployment of an LSTM model designed to assess political orientation in text, enabling us to bias accounts deliberately and monitor their increasing ideological inclinations. We observed politically biased search results appearing over time in searches through biased accounts. Additionally, the political bias of the accounts continued to increase. These results provide numerical evidence for the existence of filter bubbles and demonstrate that these bubbles exert a greater influence on search results over time. Moreover, we explored potential solutions to mitigate the influence of filter bubbles, proposing methods to promote a more diverse and inclusive information ecosystem. Our findings underscore the significance of filter bubbles in shaping users' access to information and highlight the urgency of addressing this issue to prevent further political polarization and media habit entrenchment. Through this research, we contribute to a broader understanding of the challenges posed by personalized digital environments and offer insights into strategies that can help alleviate the risks of intellectual isolation caused by filter bubbles.

목차

1. Introduction
2. A Related Study
3. An Experimental Method
4. The Results of The Experiment
5. Solution Plan
6. Research Presentation
7. Conclusion
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

진성환(Sung-hwan JIN),한동훈(Dong-hun HAN),강민수(Min-soo KANG). (2024).The Study on Visualizing the Impact of Filter Bubbles on Social Media Networks. 인공지능연구, 12 (2), 9-16

MLA

진성환(Sung-hwan JIN),한동훈(Dong-hun HAN),강민수(Min-soo KANG). "The Study on Visualizing the Impact of Filter Bubbles on Social Media Networks." 인공지능연구, 12.2(2024): 9-16

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제