본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

A Systematic Implementation of Deepfake Multimedia Video Generation and Detection using Deep Learning

이용수  15

영문명
발행기관
한국컴퓨터게임학회
저자명
Debnath Bhattacharyya Eali Stephen Neal Joshua N.Thirupathi Rao
간행물 정보
『한국컴퓨터게임학회논문지』제34권 2호, 69~81쪽, 전체 13쪽
주제분류
공학 > 컴퓨터학
파일형태
PDF
발행일자
2021.06.30
4,360

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

영문 초록

In the following years, technology has progressed in so many ways that it has provided the cyber society with a resource that only computers can excel at, such as the art of counterfeit of media, which was before unavailable. Deepfakes are a term used to describe this kind of deception. The majority of well-documented Deep Fakes are produced using Generative Adversarial Network (GAN) Models, which are essentially two distinct Machine Learning Models that perform the roles of attack and defence. These models create and identify deepfakes until they reach a point where the morphing no longer detects the deepfakes anymore. Using this algorithm/model, it is possible to discover and create new media that has a similar demographic to the training set, resulting in the development of the ideal Deep Fake media. Because the alterations are carried out utilising advanced characteristics, they cannot be seen with the human eye. However, it is completely feasible to develop an algorithm that can automatically identify this kind of tampering carried out via the internet. This not only enables us to broaden the scope of our search beyond a single media item, but also beyond a large library of mixed media. The more it learns, the better it becomes as artificial intelligence takes over in full force with automation. In order to create better deep fakes, new models are being developed all the time, making it more difficult to distinguish between genuine and morphing material.

목차

1. Introduction
2. Background and Related Works
3. Materials and Methods
4. Results And Discussions
5. Conclusion

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Debnath Bhattacharyya,Eali Stephen Neal Joshua,N.Thirupathi Rao. (2021).A Systematic Implementation of Deepfake Multimedia Video Generation and Detection using Deep Learning. 한국컴퓨터게임학회논문지, 34 (2), 69-81

MLA

Debnath Bhattacharyya,Eali Stephen Neal Joshua,N.Thirupathi Rao. "A Systematic Implementation of Deepfake Multimedia Video Generation and Detection using Deep Learning." 한국컴퓨터게임학회논문지, 34.2(2021): 69-81

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제