- 영문명
- Experimental Comparison of AI-Based Palletizing Systems for Unstructured Logistics Environments
- 발행기관
- 한국스마트미디어학회
- 저자명
- 윤봉식(Bong Shik Yun) 백상윤(Sang Yun Baek)
- 간행물 정보
- 『스마트미디어저널』제14권 제11호, 166~173쪽, 전체 8쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2025.11.28
국문 초록
본 연구는 비정형 물류 환경에서 자동 적재 시스템 고도화를 위해 RGB-Depth 융합 기반 3D 비전 기술과 AI 객체 인식 모델을 결합한 프로토타입을 실증하는 데 목적이 있다. 이를 위해 CNN 기반 YOLOv11, Transformer 기반 Swin Transformer, 그리고 Point Cloud 기반 PointNet++ 모델을 동일 조건하에 실험하여 객체 인식정확도, 상단인식률, 자세추정 오차(RPY), 연산 속도(FPS) 등 주요 성능지표를 비교·분석하였다. 실험 결과, YOLOv11은 mAP50 99.5%, 상단 인식률 96.4%, RPY 오차 ±4.2°, 52.1 FPS로 전체적으로 가장 우수한 성능을 보여 실시간 산업 환경 적용 가능성이 입증되었다. 이 밖에도 Swin Transformer는 Occlusion 환경에서의 견고성, PointNet++는 자세 인식 정밀도에서 강점을 보였으며, 본 연구의 결과는 협동로봇 기반 팔레타이징 시스템에 적용 가능한 통합 인식-제어 구조 개발의 기초 자료로 활용될 수 있다.
영문 초록
This study aims to prototype an automated palletizing system for unstructured logistics environments by integrating RGB-Depth 3D vision with AI-based object recognition. The CNN-based YOLOv11, Transformer-based Swin Transformer, and Point Cloud-based PointNet++ models were experimentally evaluated under controlled conditions using 300 labeled samples. The results indicate that YOLOv11 achieved the highest performance (mAP50 99.5%, top recognition 96.4%, ±4.2° RPY error, 52.1 FPS), demonstrating its feasibility for real-time industrial deployment. These findings provide foundational evidence for developing integrated vision-control architectures applicable to collaborative robot palletizing systems
목차
Ⅰ. 서론
Ⅱ. 이론적 배경 및 관련 기술
Ⅲ. 연구 방법
Ⅳ. 실험 및 분석 결과
Ⅴ. 결론 및 향후 과제
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!