- 영문명
- Exploratory Case Study of Celebrity Perfumes based on Generative AI and Inductive Machine Learning: Generating Hypotheses on the Successes and Failures
- 발행기관
- 한국IT서비스학회
- 저자명
- 이선미(Sunmi Lee) 이경전(Kyoung Jun Lee)
- 간행물 정보
- 『한국IT서비스학회지』제24권 제5호, 57~74쪽, 전체 18쪽
- 주제분류
- 경제경영 > 경영학
- 파일형태
- 발행일자
- 2025.10.30
국문 초록
This exploratory study investigates the success and failure hypotheses of celebrity fragrances by integrating generative AI and inductive machine learning methods. Initially, 21 cases were manually collected and analyzed to identify explanatory variables. Subsequently, the dataset was expanded to 31 cases through OpenAI’s Deep Research, allowing for more robust variable extraction and automated mapping of case-specific attributes across 13 dimensions, including promotional engagement, product quality, fandom scale, brand continuity, and celebrity-product alignment etc. The resulting decision tree revealed that only those celebrity fragrances that exhibited both high product quality and sustained brand management achieved market success, while the absence of either condition led consistently to failure. These findings illustrate a clear inductive rule set for predicting outcomes in celebrity fragrance ventures. The study highlights the powerful role of AI tools in automating complex case study processes from data collection and hypothesis generation to decision modeling, yet underscores the continued necessity of applying rigorous social science methodologies to validate AI-driven insights. This research contributes to establishing a hybrid methodological framework for empirical case studies in the era of generative AI.
영문 초록
목차
1. 서론
2. 이론적 배경
3. 연구 방법
4. 연구 결과: 생성 가설과 시사점
5. 결론: 연구 의의 및 향후 연구
참고문헌
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!