- 영문명
- Empirical Validation of wise‑BIM: A Large‑Language‑Model- Driven Framework for BIM Modeling Evaluation and Feedback
- 발행기관
- 한국BIM학회
- 저자명
- 김도영(Do Young Kim) 조선주(Sun Joo Cho)
- 간행물 정보
- 『KIBIM Magazine』15권 3호, 57~64쪽, 전체 8쪽
- 주제분류
- 공학 > 건축공학
- 파일형태
- 발행일자
- 2025.09.30
국문 초록
This study proposes wise-BIM, a BIM modeling evaluation and feedback framework that embeds large language models (LLMs), and empirically validates its effectiveness in civil-engineering design and checking scenarios. The framework comprises three stages: (A) structuring decision nodes, (B) defining purpose-centered elements, and (C) a RAG-prompt conversational feedback loop. By integrating static resources with dynamic reasoning, wise-BIM provides contextualized guidance to modelers without training on project files. In a minimum-viable expert study across representative tasks, the LLM-RAG condition, compared with manual work, improved goal refinement, reduced error-detection time, decreased rework cycles, lowered cognitive workload (NASA-TLX), reduced clarification requests (Clarify count), and increased usability (SUS). We also observed model-specific trade-offs between communication efficiency and the depth of goal elaboration, informing practical model-selection strategies. These findings indicate that conversational feedback by LLMs can mitigate the adaptability and explainability limitations of rule-based automation in BIM and provide a human-in-the-loop pathway for quality control during modeling.
영문 초록
목차
1. 서 론
2. 이론적 고찰
3. 방법론
4. 토의 및 시사점
5. 결 론
References
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!