- 영문명
- Development of Remaining Teeth Prediction Model for the Elderly Using Machine Learning: Using the 9th Data of the Aging Research Panel Survey
- 발행기관
- 한국구강보건과학회
- 저자명
- 김슬기(Seul-Gi Kim) 최자형(Ja-Hyeong Choi)
- 간행물 정보
- 『한국구강보건과학회지』제13권 제3호, 76~82쪽, 전체 7쪽
- 주제분류
- 의약학 > 기타의약학
- 파일형태
- 발행일자
- 2025.09.30

국문 초록
Objectives: This study aimed to develop a machine-learning model to predict the number of remaining teeth in the elderly and identify the most influential factors.
Methods: Using the 9th wave of the Korean Longitudinal Study of Aging (KLoSA), 4,451 participants aged 65 and older were analyzed. Predictive models using XGBoost, Random Forest, and Logistic Regression were built based on demographic and health behavior variables.
Results: XGBoost demonstrated the best performance (AUROC: 0.686, accuracy: 0.673, precision: 0.690, recall: 0.872, F1 score: 0.770). The top predictors were age, subjective health status, educational level, economic activity, and diabetes.
Conclusions: The model has potential utility in identifying high-risk elderly populations and informing preventive oral health policies.
영문 초록
목차
Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 연구결과
Ⅳ. 고찰
Ⅴ. 결론
REFERENCES
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
