- 영문명
- 발행기관
- 충청수학회
- 저자명
- Yonghwa Cho
- 간행물 정보
- 『Journal of the Chungcheong Mathematical Society』Volume 38, No. 3, 199~209쪽, 전체 11쪽
- 주제분류
- 자연과학 > 자연과학일반
- 파일형태
- 발행일자
- 2025.08.31

국문 초록
Let us consider the first homology group H (L, Z) of the link of a Wahl singularity. According to Mumford, H (L, Z) is generated by suitably oriented loops around the exceptional curves in the minimal resolution. It can be easily seen that the loop around one of the end branches of the exceptional curves generates H (L, Z). However, it is not always true that the loop around an intermediate curve generates H (L, Z). In this article, we define a special intermediate curve (which we call an ancestor ) in the chain of exceptional curves, and prove the the loop around the ancestor generates H (L, Z). This can be applied to the construction of exceptional vector bundles on Dolgachev surfaces which are constructed via Q-Gorenstein smoothing.
영문 초록
목차
1. Introduction
2. Proof
3. Application to exceptional vector bundles on Dolgachev surfaces
References
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
