학술논문
Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique
이용수 0
- 영문명
- 발행기관
- 한국방사성폐기물학회
- 저자명
- Minseop Kim Seungrae Lee Seok Yoon Min-Kyung Jeon
- 간행물 정보
- 『Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT)』Vol.20 No.3, 269~278쪽, 전체 10쪽
- 주제분류
- 공학 > 공학일반
- 파일형태
- 발행일자
- 2022.06.30

국문 초록
The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.
영문 초록
목차
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
