- 영문명
- Implementation of Text Emotion-based Music Recommendation System Employing Energy-Valence Model
- 발행기관
- 한국IT서비스학회
- 저자명
- 김이슬(Leeseul Kim) 김도영(Doyoung Kim) 신수영(Sooyoung Shin) 백남균(Nam-Kyun Baik) 이재호(Jaeho Lee)
- 간행물 정보
- 『한국IT서비스학회지』제24권 제2호, 17~29쪽, 전체 13쪽
- 주제분류
- 경제경영 > 경영학
- 파일형태
- 발행일자
- 2025.04.30

국문 초록
In this study, we present Feelic, an emotion-based music recommendation application that analyzes users' emotions and recommends customized music. The system classifies the user's diary into five emotions: joy, sadness, anger, anxiety, and neutrality using the KoBERT model, and recommends music that matches the emotions by extracting audio characteristics of various songs using Spotify API. Through K-means clustering, music is divided into 30 clusters and songs belonging to clusters such as user-preferred music are recommended. The application is designed so that users can easily write a diary, analyze emotions, and recommend music accordingly, and aims to manage emotions and improve mental health. To prove the usefulness and effectiveness of Feelic, an emotion analysis system, a music recommendation system, and an application implementation process are described in detail. The results are evaluated with the energy-valence model and presented as reasonable.
영문 초록
목차
1. 서론
2. 연구방법
3. 감성 분석 모델
4. 음악 추천 시스템
5. 시스템 구현 및 기능
6. 실험 및 평가
7. 평가
참고문헌
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
