학술논문
Ransomware Detection Using Deep Q-Network and L2PGD Attack Analysis on a Custom Dataset
이용수 143
- 영문명
- 발행기관
- 한국스마트미디어학회
- 저자명
- Niringiye Godfrey HoonJae Lee ByungGook Lee
- 간행물 정보
- 『스마트미디어저널』제14권 제2호, 19~25쪽, 전체 7쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2025.02.28

국문 초록
In the current fast changing cyberspace, ransomware has continued to be a formidable threat. Through this research, using deep reinforcement learning and adversarial attack models, we undertook performance analysis evaluation of a locally constructed ransomware dataset. The dataset contained key dynamic features that were extracted from raw ransomware samples processed in Cuckoo sandbox environment. Our approach combined supervised learning for initial detection and Deep Q-Network (DQN) algorithm for adaptive behavioral analysis. An L2 Projected Gradient Descent (L2PGD) adversarial attack was then carried out to evaluate the robustness of both security and stability of the ransomware detection model. The results that were obtained demonstrated that Deep Reinforcement Learning (DRL) can effectively classify samples as benign and ransomware. Moreover, the successful adversarial attack underscores the need for improved robustness measures in artificial intelligence models.
영문 초록
목차
Ⅰ. INTRODUCTION
Ⅱ. Background and Motivation
Ⅲ. PROPOSED METHOD
Ⅳ. Results and Analysis
Ⅴ. Conclusion and Future works
REFERENCES
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
