본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Analyzing the Impact of Image Size on CNN Model Performance for Fish Disease Diagnosis

이용수 14

영문명
발행기관
전남대학교 수산과학연구소
저자명
Dae-Hyon KIM
간행물 정보
『수산과학연구소 논문집』제33권 제1호, 31~37쪽, 전체 7쪽
주제분류
농수해양 > 수산학
파일형태
PDF
발행일자
2024.12.31
이용가능 이용불가
  • sam무제한 이용권 으로 학술논문 이용이 가능합니다.
  • 이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다. 1:1 문의
논문 표지

국문 초록

The rapid growth of aquaculture has made the diagnosis of fish diseases a critical challenge, potentially leading to significant economic losses. This study investigates the impact of image size on the performance of Convolutional Neural Networks (CNNs) for fish disease diagnosis, with the specific goal of determining the optimal image size for maximizing CNN performance. While CNNs have shown excellent performance in image classification tasks, their effectiveness can vary significantly depending on factors such as image size. This study analyzes how image downscaling affects CNN performance by evaluating predictive accuracy across various image sizes. The experimental results confirm that reducing image size increases predictive accuracy and reduces variance in model performance. Specifically, images scaled down to 20×25 pixels achieved an average accuracy of 90.18%, surpassing the original image accuracy of 83.17%. Smaller images help reduce unnecessary noise, prevent overfitting, and operate effectively in environments with limited computational resources. The findings underscore the necessity of selecting optimal image sizes to maximize diagnostic performance and practicality. This research provides valuable insights into designing more efficient and accurate automated diagnostic systems in aquaculture and highlights the importance of carefully considering input image size when developing CNN models. The results contribute to advancing machine learning applications in aquaculture, offering effective management and mitigation strategies for fish disease outbreaks.

영문 초록

목차

Introduction
Research Methodology
Research Results
Conclusion
References

키워드

해당간행물 수록 논문

참고문헌

  • Springer
  • European Journal of Remote Sensing
  • MIT Press
  • International Journal of Nonlinear Analysis and Applications
  • Journal of the World Aquaculture Society
  • International Journal of Computer Mathematics
  • International Journal of Transportation
  • Transportation Planning and Technology
  • International Conference on Learning Representations
  • Advances in Neural Information Processing Systems
  • Nature
  • International Journal of Computer Applications
  • Proceedings of the 27th International Conference on Machine Learning
  • Procedia Computer Science
  • International Conference on Learning Representations
  • European Conference on Computer Vision
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Dae-Hyon KIM. (2024).Analyzing the Impact of Image Size on CNN Model Performance for Fish Disease Diagnosis. 수산과학연구소 논문집, 33 (1), 31-37

MLA

Dae-Hyon KIM. "Analyzing the Impact of Image Size on CNN Model Performance for Fish Disease Diagnosis." 수산과학연구소 논문집, 33.1(2024): 31-37

sam 이용권 선택
님이 보유하신 이용권입니다.
차감하실 sam이용권을 선택하세요.