- 영문명
- 발행기관
- 대한자원환경지질학회
- 저자명
- Lydie Uwibambe 조준현(Jun Hyeon Jo) 하완수(Wansoo Ha)
- 간행물 정보
- 『자원환경지질』57권 5호, 499~512쪽, 전체 14쪽
- 주제분류
- 자연과학 > 지질학
- 파일형태
- 발행일자
- 2024.10.31

국문 초록
Random noise in seismic data can significantly impair hydrocarbon exploration by degrading the quality of subsurface imaging. We propose a deep learning approach to attenuate random noise in Laplace-domain seismic wavefields. Our method employs a modified U-Net architecture, trained on diverse synthetic P-wave velocity models simulating the Gulf of Mexico subsurface. We rigorously evaluated the network’s denoising performance using both the synthetic Pluto velocity model and real Gulf of Mexico field data. We assessed the effectiveness of our approach through Laplace-domain full waveform inversion. The results consistently show that our UNet approach outperforms traditional singular value decomposition methods in noise attenuation across various scenarios. Numerical examples demonstrate that our method effectively attenuates random noise and significantly enhances the accuracy of subsequent seismic imaging processes.
영문 초록
목차
1. Introduction
2. Method
3. Results
4. Discussion
5. Conclusion
Acknowledgement
References
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
