학술논문
Does BERT Learn Syntactic and Semantic Preferences in Picture Noun Phrase Interpretation?
이용수 11
- 영문명
- Does BERT Learn Syntactic and Semantic Preferences in Picture Noun Phrase Interpretation?
- 발행기관
- 한국영어학학회
- 저자명
- 송지나(Jina Song) 송상헌(Sanghoun Song)
- 간행물 정보
- 『영어학연구』제30권 2호, 25~56쪽, 전체 32쪽
- 주제분류
- 어문학 > 영어와문학
- 파일형태
- 발행일자
- 2024.05.31
국문 초록
영문 초록
This research investigates the Bidirectional Encoder Representations from Transformers (BERT) model’s ability to understand semantic and syntactic preferences of low-frequency expressions through reference resolution in picture noun phrases (PNPs). To this end, we report on three experiments that evaluate BERT’s understanding of reference resolution differences between personal pronouns and reflexives in possessor-less and possessed PNPs. Our experiments show that BERT exhibits human-like referential preferences with reflexives but not with personal pronouns. The findings for reflexive resolution suggest that BERT’s deep learning training does not solely rely on frequency information but serves as a mechanism for acquiring more systematic linguistic soft constraints Moreover, the different resolution patterns from the pronouns could be attributed to the reflexives’ more explicit referential dependency and their relatively low frequency.
목차
1. Introduction
2. Background
3. Experiments
4. General Discussion
References
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!