- 영문명
- Market Timing and Seasoned Equity Offering
- 발행기관
- 강원대학교 경영경제연구소
- 저자명
- 서성원(Sung Won Seo)
- 간행물 정보
- 『아태비즈니스연구』제15권 제1호, 145~157쪽, 전체 13쪽
- 주제분류
- 인문학 > 문학
- 파일형태
- 발행일자
- 2024.03.30

국문 초록
영문 초록
Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs’ decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.
목차
Ⅰ. 서론
Ⅱ. 연구 방법론
Ⅲ. 연구 결과
Ⅳ. 추가 분석
Ⅴ. 결론
References
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
