학술논문
Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System
이용수 40
- 영문명
- Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System
- 발행기관
- 한국스마트미디어학회
- 저자명
- To Xuan Dung Seongwon Cho
- 간행물 정보
- 『스마트미디어저널』Vol13, No.1, 24~35쪽, 전체 12쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2024.01.31

국문 초록
영문 초록
The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.
목차
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORK
Ⅲ. METHODOLOGY
Ⅳ. EXPERIMENT AND RESULTS
Ⅴ. CONCLUSION
REFERENCES
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
