
국문 초록
영문 초록
As the heat generation problem is predicted to intensify due to the trend of integration and high density of the power semiconductor power module responsible for the electric drive of the electric vehicle, which has recently been in full swing, high-reliability materials and It is essential to secure large-area heat dissipation substrate manufacturing process technology, and technical obstacles to maintain reliability even in environmental changes such as severe cold/excessive heat are becoming issues.
In the case of silicon nitride ceramic material, which is in the spotlight as a heat dissipation substrate material, a balance that meets the user’s needs is required. In order to realize excellent heat dissipation performance, it is necessary to reduce the thickness of the silicon nitride substrate, increase the thickness of the metal junction, and improve the thermal conductivity of the silicon nitride material. Therefore, the task of technological progress beyond the complementary relationship between heat conduction-intensity still remains.
In this paper, various technical considerations for increasing the thermal conductivity of silicon nitride ceramics are described, and the direction of technological progress is described along with detailed examples. In order to improve thermal conductivity, it is necessary to minimize the inflow of impurities into the raw material powder, appropriately select sintering additives required for liquid phase sintering, and optimize the microstructure through minimization of the amorphous glass phase and control of grain growth by the gas pressure sintering process.
목차
1. 서론 (Introduction)
2. 본론 : 질화규소 세라믹의 열전도 특성 및 기술 동향
3. 결론
Acknowledgement
REFERENCES
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
