- 영문명
- Algorithm Improvement Through AI-Based Casting Process Parameter Optimization
- 발행기관
- 한국전자통신학회
- 저자명
- 심현 최서영 김현욱
- 간행물 정보
- 『한국전자통신학회 논문지』제18권 제3호, 441~448쪽, 전체 8쪽
- 주제분류
- 공학 > 전자/정보통신공학
- 파일형태
- 발행일자
- 2023.06.30

국문 초록
제조 공정 데이터에 있어 주조 공정은 가장 중요한 공정이면서 높은 불량률의 원인을 발생시키는 공정이다. 주조 공정의 품질관리는 생산성과 품질평가의 핵심 요소라 할 수 있다. 본 연구에서는 공정 데이터를 통한 요인 분석, 상관 분석, 회귀 분석 결과를 기반으로 최적화 된 머신러닝 모델 알고리즘을 개발한다. 이를 적용한 주조공정을 통해서 불량률을 줄이고 스마트 팩토리의 데이터 적합성을 검증하고자 한다.
영문 초록
The quality of the casting process generates the largest source of defects in the manufacturing process, so its management is a key factor in productivity and quality evaluation. Based on the results of factor analysis, correlation analysis, and regression analysis with process data, this study aims to optimize the machine learning model to reduce the defect rate and verify the data suitability for smart factories.
목차
Ⅰ. 서 론
Ⅱ. 연구 방법
Ⅲ. AI 기반의 주조 공정 파라미터 최적화를 통한 알고리즘 개선
Ⅳ. 결론
References
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
