본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements

이용수 11

영문명
Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements
발행기관
한국전문물리치료학회
저자명
Park Junwoo Choi Jongwon Lee Seyoung Lim Kitaek Choi Woochol Joseph
간행물 정보
『한국전문물리치료학회지』제30권 제2호, 102~109쪽, 전체 8쪽
주제분류
의약학 > 의학일반
파일형태
PDF
발행일자
2023.05.30
이용가능 이용불가
  • sam무제한 이용권 으로 학술논문 이용이 가능합니다.
  • 이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다. 1:1 문의
논문 표지

국문 초록

영문 초록

Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate high performance classification models of fall risk of older adults. Objects: This study aims to develop a classification model of fall risk using IMU data and clinical measurements in older adults. Methods: Twenty-six older adults were assessed and categorized into high and low fall risk groups. IMU sensor data were obtained while walking from each group, and features were extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), which generated classification models to differentiate high and low fall risk groups. Model’s performance was compared and presented with accuracy, sensitivity, and specificity. Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2. Conclusion: Our results suggest that the fall risk classification using IMU sensor data obtained during gait has potentials to be developed for practical use. Different machine learning techniques involving larger data set should be warranted for future research and development.

목차

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONCLUSIONS
FUNDING
ACKNOWLEDGEMENTS
CONFLICTS OF INTEREST
AUTHOR CONTRIBUTION
ORCID
REFERENCES

키워드

해당간행물 수록 논문

참고문헌

최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Park Junwoo,Choi Jongwon,Lee Seyoung,Lim Kitaek,Choi Woochol Joseph. (2023).Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements. 한국전문물리치료학회지, 30 (2), 102-109

MLA

Park Junwoo,Choi Jongwon,Lee Seyoung,Lim Kitaek,Choi Woochol Joseph. "Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements." 한국전문물리치료학회지, 30.2(2023): 102-109

sam 이용권 선택
님이 보유하신 이용권입니다.
차감하실 sam이용권을 선택하세요.