학술논문
Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing
이용수 30
- 영문명
- Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing
- 발행기관
- 한국스마트미디어학회
- 저자명
- Shreya Khisa Sangman Moh
- 간행물 정보
- 『스마트미디어저널』Vol12, No.3, 68~76쪽, 전체 9쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2023.04.30

국문 초록
영문 초록
Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.
목차
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORKS
Ⅲ. SYSTEM MODEL
Ⅳ. Q-LEATNING-BASED COMPUTTAION OFFLOADING
Ⅴ. PERFORMANCE EVALUATION
Ⅵ. CONLCUSION
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
