본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography

이용수 0

영문명
Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography
발행기관
대한안과학회
저자명
Richul Oh Eun Kyoung Lee Kunho Bae Un Chul Park Hyeong Gon Yu Chang Ki Yoon
간행물 정보
『The Korean Journal of Ophthalmology』Vol.37 No.2, 95~104쪽, 전체 10쪽
주제분류
인문학 > 역사학
파일형태
PDF
발행일자
2023.04.30
이용가능 이용불가
  • sam무제한 이용권 으로 학술논문 이용이 가능합니다.
  • 이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다. 1:1 문의
논문 표지

국문 초록

영문 초록

Purpose: To develop a deep learning model that can predict the axial lengths of eyes using ultra-widefield (UWF) fundus photography. Methods: We retrospectively enrolled patients who visited the ophthalmology clinic at the Seoul National University Hospitalbetween September 2018 and December 2021. Patients with axial length measurements and UWF images taken within 3months of axial length measurement were included in the study. The dataset was divided into a development set and a testset at an 8:2 ratio while maintaining an equal distribution of axial lengths (stratified splitting with binning). We used transferlearning-based on EfficientNet B3 to develop the model. We evaluated the model’s performance using mean absolute error(MAE), R-squared (R2), and 95% confidence intervals (CIs). We used vanilla gradient saliency maps to illustrate the regions predominantlyused by convolutional neural network. Results: In total, 8,657 UWF retinal fundus images from 3,829 patients (mean age, 63.98 ±15.25 years) were included in thestudy. The deep learning model predicted the axial lengths of the test dataset with MAE and R2 values of 0.744 mm (95% CI,0.709-0.779 mm) and 0.815 (95% CI, 0.785-0.840), respectively. The model’s accuracy was 73.7%, 95.9%, and 99.2% in prediction,with error margins of ±1.0, ±2.0, and ±3.0 mm, respectively. Conclusions: We developed a deep learning-based model for predicting the axial length from UWF images with good performance.

목차

Materials and Methods
Results
Discussion
References

키워드

해당간행물 수록 논문

참고문헌

최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Richul Oh,Eun Kyoung Lee,Kunho Bae,Un Chul Park,Hyeong Gon Yu,Chang Ki Yoon. (2023).Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography. The Korean Journal of Ophthalmology, 37 (2), 95-104

MLA

Richul Oh,Eun Kyoung Lee,Kunho Bae,Un Chul Park,Hyeong Gon Yu,Chang Ki Yoon. "Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography." The Korean Journal of Ophthalmology, 37.2(2023): 95-104

sam 이용권 선택
님이 보유하신 이용권입니다.
차감하실 sam이용권을 선택하세요.