- 영문명
- Analytical Study on the Prediction of Fire Evacuation Time in Large Complex Buildings Using the Ensemble Learning Technique
- 발행기관
- 한국방재학회
- 저자명
- 이두희 김학경 김전수 황현수 최두찬
- 간행물 정보
- 『2. 한국방재학회 논문집』22권 5호, 9~17쪽, 전체 9쪽
- 주제분류
- 공학 > 기타공학
- 파일형태
- 발행일자
- 2022.10.31

국문 초록
최근 건축물의 화재위험도가 높아짐에 따라 화재발생 시 많은 인명피해가 발생하고 있으며, 성능위주설계의 중요성이 강조되고있나. 그러나 성능위주 소방설계를 위한 시뮬레이션의 경우, 많은 인력 및 시간이 소요되며 경미한 변경에도 다시 수행해야하는 어려움이 있다. 따라서 본 연구에서는 앙상블기법을 적용하여 화재거리 별 허용피난시간을 화재인자 및 공간인자로쉽게 예측할 수 있는 예측모델을 개발하고자 하였다. FDS 데이터에 기반하여 기계학습을 통해 개발한 예측모델은 결정계수가0.91에 달하는 높은 예측률을 보였으며, 이러한 예측모델을 적용하여 실시간으로 거리별 ASET을 도출할 수 있을 것으로판단된다.
영문 초록
With the recent increase in the risk of fire in buildings, the number of casualties that occur in the event of a fire have increased.
This emphasizes the importance of performance-based design. However, simulating a performance-based design requires a lot of manpower and time, and re-simulation with minor changes is a difficult task. Therefore, in this study, we attempt to develop a prediction model that can easily predict the ASET for each fire distance as a fire factor and spatial factor by applying ensemble learning. The prediction model developed using machine learning based on FDS data showed a high coefficient of determination of 0.91, and we believe that ASET for each distance can be derived in real time by applying this prediction model.
목차
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
