- 영문명
- Multi-Dimensional Emotion Recognition Model of Counseling Chatbot
- 발행기관
- 한국스마트미디어학회
- 저자명
- 임명진(Myung Jin Lim) 이명호(Moung Ho Yi) 신주현(Ju Hyun Shin)
- 간행물 정보
- 『스마트미디어저널』Vol10, No.4, 21~27쪽, 전체 7쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2021.12.31
국문 초록
최근 COVID-19로 인한 코로나 블루로 상담의 중요성이 높아지고 있다. 또한 비대면 서비스의 증가로 상담 매체에 변화를 준 챗봇에 관한 연구들이 활발하게 진행되고 있다. 챗봇을 통한 비대면 상담에서는 내담자의 감정을 정확하게 파악하는 것이 가장 중요하다. 하지만 내담자가 작성한 문장만으로 감정을 인식하는 데는 한계가 있으므로 더 정확한 감정 인식을 위해서는 문장에 내제되어있는 차원 감정을 인식하는 것이 필요하다. 따라서 본 논문에서는 상담 챗봇의 감정 인식 개선을 위해 원본 데이터를 데이터의 특성에 맞게 보정한 후 Word2Vec 모델을 학습하여 생성된 벡터와 문장 VAD(Valence, Arousal, Dominance)를 딥러닝 알고리즘으로 학습한 다차원 감정 인식 모델을 제안한다. 제안한 모델의 유용성 검증 방법으로 3가지 딥러닝 모델을 비교 실험한 결과로 Attention 모델을 사용했을 때 R-squared가 0.8484로 가장 좋은 성능을 보인다.
영문 초록
Recently, the importance of counseling is increasing due to the Corona Blue caused by COVID-19. Also, with the increase of non-face-to-face services, researches on chatbots that have changed the counseling media are being actively conducted. In non-face-to-face counseling through chatbot, it is most important to accurately understand the client s emotions. However, since there is a limit to recognizing emotions only in sentences written by the client, it is necessary to recognize the dimensional emotions embedded in the sentences for more accurate emotion recognition. Therefore, in this paper, the vector and sentence VAD (Valence, Arousal, Dominance) generated by learning the Word2Vec model after correcting the original data according to the characteristics of the data are learned using a deep learning algorithm to learn the multi-dimensional We propose an emotion recognition model. As a result of comparing three deep learning models as a method to verify the usefulness of the proposed model, R-squared showed the best performance with 0.8484 when the attention model is used.
목차
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 다차원 감정 인식 모델
Ⅳ. 실험 및 결과
Ⅴ. 결론 및 제언
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!