- 영문명
- Extraction of Line Drawing From Cartoon Painting Using Generative Adversarial Network
- 발행기관
- 한국스마트미디어학회
- 저자명
- 유경호(Kyung Ho Yu) 양희덕(Hee Deok Yang)
- 간행물 정보
- 『스마트미디어저널』Vol10, No.2, 30~37쪽, 전체 8쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2021.06.30

국문 초록
최근 웹툰이나 애니메이션을 3D 콘텐츠로 제작하는 사례가 증가하고 있다. 3D 콘텐츠 제작에서 모델링은 반드시 필요하지만 시간이 오래 걸리는 작업이다. 드로잉 기반 모델링을 사용하여 2D 카툰 원화에서 3D 모델을 생성하기 위해서는 라인 드로잉이 필요하다. 하지만 2D 카툰원화는 3D 모델의 기하학적 특성이 표현되지 않고 카툰원화의 제작 기법이 다양하여 일관성 있게 라인 드로잉 추출이 힘들다. 본 연구에서는 generative adversarial network (GAN) 모델을 사용하여 2D 카툰 원화에서 3D 모델의 기하학적 특성을 나타내는 라인 드로잉을 추출하는 방법을 제안하고 이를 실험한다.
영문 초록
Recently, 3D contents used in various fields have been attracting people s attention due to the development of virtual reality and augmented reality technology. In order to produce 3D contents, it is necessary to model the objects as vertices. However, high-quality modeling is time-consuming and costly. In order to convert a 2D character into a 3D model, it is necessary to express it as line drawings through feature line extraction. The extraction of consistent line drawings from 2D cartoon cartoons is difficult because the styles and techniques differ depending on the designer who produces them. Therefore, it is necessary to extract the line drawings that show the geometrical characteristics well in 2D cartoon shapes of various styles. This study proposes a method of automatically extracting line drawings. The 2D Cartoon shading image and line drawings are learned by using adversarial network model, which is artificial intelligence technology and outputs 2D cartoon artwork of various styles. Experimental results show the proposed method in this research can be obtained as a result of the line drawings representing the geometric characteristics when a 2D cartoon painting as input.
목차
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 특징선 추출 및 라인 드로잉 검출·생성
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론 및 향후 연구 방향
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
