- 영문명
- 발행기관
- 한국유통과학회
- 저자명
- Nur Azura SANUSI Adzie Faraha MOOSIN Suhal KUSAIRI
- 간행물 정보
- 『The Journal of Asian Finance, Economics and Business(JAFEB)』Vol. 7 No.12, 109~114쪽, 전체 6쪽
- 주제분류
- 경제경영 > 경제학
- 파일형태
- 발행일자
- 2020.12.30
이용가능
이용불가
- sam무제한 이용권 으로 학술논문 이용이 가능합니다.
- 이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다. 1:1 문의

국문 초록
영문 초록
The aim of this study is to develop basic artificial neural network models in forecasting the in-sample gross domestic product (GDP) of Malaysia. GDP is one of the main indicators in presenting the macro economic condition of a country as set by the world authority bodies such as the World Bank. Hence, this study uses an artificial neural network-based approach to make predictions concerning the economic growth of Malaysia. This method has been proposed due to its ability to overcome multicollinearity among variables, as well as the ability to cope with non-linear problems in Malaysia’s growth data. The selected inputs and outputs are based on the previous literatures as well as the economic growth theory. Therefore, the selected inputs are exports, imports, private consumption, government expenditure, consumer price index (CPI), inflation rate, foreign direct investment (FDI) and money supply, which includes M1 and M2. Whilst, the output is real gross domestic product growth rate. The results of this study showed that the neural network method gives the smallest value of mean error which is 0.81 percent with a total difference of 0.70 percent. This implies that the neural network model is appropriate and is a relevant method in forecasting the economic growth of Malaysia.
목차
1. Introduction
2. Literature Review
3. Research Methods
4. Results and Discussion
5. Conclusion
References
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
