- 영문명
- Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks
- 발행기관
- 한국스마트미디어학회
- 저자명
- 최경남(Kyung Nam Choi)
- 간행물 정보
- 『스마트미디어저널』Vol10, No.1, 32~38쪽, 전체 7쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2021.03.30
국문 초록
사진 이미지에서의 딥러닝 학습을 통한 이미지 분류는 지난 수년간 매우 활발한 연구 분야로 자리하고 있다. 본 논문에서는 국내산 석재 이미지로부터 딥러닝 학습을 통해 자동으로 석재를 판별하는 방법을 제안한다. 제안된 방법은 300x300픽셀의 황등석, 고흥석, 포천석의 사진 이미지들을 파이썬의 해시 라이브러리를 이용하여 석재별 중복된 이미지를 검사하고, 검사 결과로 해시값이 같은 중복된 이미지를 제거하여 석재별 딥러닝 학습이미지를 만드는 데이터 전처리 과정을 수행한다. 또한 미리 학습된 모델인 VGGNet을 활용하기 위해 학습된 이미지 사이즈인 224x224픽셀로 석재별 이미지들의 사이즈를 재조정하고, 학습데이터와 학습을 위한 검증데이터의 비율을 80% 대 20%로 나누어 딥러닝 학습을 수행한다. 딥러닝 학습을 수행한 후 손실 함수 그래프와 정확도 그래프를 출력하고 세 종류의 석재 이미지에 대해 딥러닝 학습 모델의 예측 결과를 출력하였다.
영문 초록
Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python s hash library to scan 300x300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224x224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.
목차
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!