- 영문명
- Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier
- 발행기관
- 한국시뮬레이션학회
- 저자명
- 온승엽(Syng-Yup Ohn) 지승도(Sung-Do Chi)
- 간행물 정보
- 『한국시뮬레이션학회 논문지』제20권 제2호, 77~85쪽, 전체 9쪽
- 주제분류
- 공학 > 기타공학
- 파일형태
- 발행일자
- 2011.06.30

국문 초록
생물 및 의학계에서는 생물정보학(bioinformatics)의 데이터 중 혈청 단백질(proteome)에서 추출한 데이터가 질병의 진단에 관련된정보를가지고있고, 이데이터를분류분석함으로질병을조기에진단할수있다고믿고있다. 본논문에서는혈청 단백질(2-D PAGE: Two-dimensional polyacrylamide gel electrophoresis)로부터 암과 정상을 판별하는 새로운 복합분류기를 제안한다. 새로운 복합 분류기에서는 support vector machine(SVM)와 다층 퍼셉트론(multi-layer perceptron: MLP)와 k-최근 접 이웃(k-nearest neighbor: k-NN)분류기를 앙상블(ensemble) 방법으로 통합하는 동시에 다중 부스팅(boosting) 방법으로 각 분류기를 확장하여 부분류기(subclassifier)의 배열(array)으로서 복합분류기를 구성하였다. 각 부분류기에서는 최적 특성 집합 (feature set)을 탐색하기 위하여 유전 알고리즘(genetic algorithm: GA)를 적용하였다. 복합분류기의 성능을 측정하기 위하여 암연구에서 얻어진 임상 데이터를 복합분류기에 적용하였고 결과로서 단일 분류기 보다 높은 분류 정확도와 안정성을 보여 주었다.
영문 초록
It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.
목차
1. 서론
2. 관련 연구
3. 다중 부스팅을 이용한 암진단 시스템
4. 결론 및 향후 연구
참고문헌
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
