학술논문
A Study on Applying the SRCNN Model and Bicubic Interpolation to Enhance Low-Resolution Weeds Images for Weeds Classification
이용수 11
- 영문명
- 발행기관
- 한국스마트미디어학회
- 저자명
- Vo Hoang Trong Yu Gwang-hyun Dang Thanh Vu Lee Ju-hwan Nguyen Huy Toan Kim Jin-young
- 간행물 정보
- 『스마트미디어저널』Vol9, No.4, 17~25쪽, 전체 9쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2020.12.30
국문 초록
영문 초록
In the image object classification problem, low-resolution images may have a negative impact on the classification result, especially when the classification method, such as a convolutional neural network (CNN) model, is trained on a high-resolution (HR) image dataset. In this paper, we analyze the behavior of applying a classical super-resolution (SR) method such as bicubic interpolation, and a deep CNN model such as SRCNN to enhance low-resolution (LR) weeds images used for classification. Using an HR dataset, we first train a CNN model for weeds image classification with a default input size of 128×128. Then, given an LR weeds image, we rescale to default input size by applying the bicubic interpolation or the SRCNN model. We analyze these two approaches on the Chonnam National University (CNU) weeds dataset and find that SRCNN is suitable for the image size is smaller than 80×80, while bicubic interpolation is convenient for a larger image.
목차
I. INTRODUCTION
II. RELATED WORK
III. METHODOLOGY
IV. EXPERIMENTS
V. CONCLUSION
REFERENCES
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!