- 영문명
- Accessing the Clustering of TNM Stages on Survival Analysis of Lung Cancer Patient
- 발행기관
- 한국스마트미디어학회
- 저자명
- 최철웅(Chulwoong Choi) 김경백(Kyungbaek Kim)
- 간행물 정보
- 『스마트미디어저널』Vol9, No.4, 126~133쪽, 전체 8쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2020.12.30
국문 초록
병원에서는 폐암 환자의 최종병기를 기준으로 치료방침 및 예후를 결정하고 있다. 폐암 환자의 최종병기는 미국 암 연합회(AJCC)에서 제공하는 TNM 분류방법을 바탕으로 7단계로 나누어 진단된다. 이런 접근 방법은 환자의 치료, 예후 및 생존일 예측 등 다양한 분야에서 사용하기에 한계가 있다. 이 논문에서는 데이터 과학적 접근을 통해 T, N, M병기를 사용하여 생존일수별 환자집단을 나눌 수 있는지 알아보기 위해 비지도 학습 중 하나인 군집분석(Clustering)을 진행한 후 군집분석의 결과를 Cox비례위험모형을 사용하여 비교 하였다. 환자들의 최종병기를 사용하지 않고, T, N, M병기 정보만 사용하였을 때 생존시간 예측정확도가 더 높은 것을 확인하였다. 특히, AJCC의 최종병기 7단계와 같이 군집의 개수를 7로 설정했을 때보다 군집의 수를 축소하거나 확장했을 때 T, N, M 병기 군집분석을 통한 생존시간 예측정확도가 향상하는 것을 확인하였다.
영문 초록
The treatment policy and prognosis are determined based on the final stage of lung cancer patients. The final stage of lung cancer patients is determined based on the T, N, and M stage classification table provided by the American Cancer Society (AJCC). However, the final stage of AJCC has limitations in its use for various fields such as patient treatment, prognosis and survival days prediction. In this paper, clustering algorithm which is one of non-supervised learning algorithms was assessed in order to check whether using only T, N, M stages with a data science method is effective for classifying the group of patients in the aspect of survival days. The final stage groups and T, N, M stage clustering groups of lung cancer patients were compared by using the cox proportional hazard model. It is confirmed that the accuracy of prediction of survival days with only T, N, M stages becomes higher than the accuracy with the final stages of patients. Especially, the accuracy of prediction of survival days with clustering of T, N, M stages improves when more or less clusters are analyzed than the seven clusters which is same to the number of final stage of AJCC.
목차
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 실험 데이터셋
Ⅳ. TNM병기 클러스터링
Ⅴ. 폐암환자의 생존 분석
Ⅵ. 결론
REFERENCES
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!