학술논문
The Asymptotic Properties of Mean-centered Binned Kernel Density Estimator
이용수 13
- 영문명
- 발행기관
- 한국자료분석학회
- 저자명
- Changkon Hong Misook Yun
- 간행물 정보
- 『Journal of The Korean Data Analysis Society (JKDAS)』Vol.11 No.4, 1771~1783쪽, 전체 13쪽
- 주제분류
- 자연과학 > 통계학
- 파일형태
- 발행일자
- 2009.08.30

국문 초록
영문 초록
With the massive data set the kernel density estimator has the deficiency of huge computation time. In this situation, the reduction of the computation time is of crucial interest and hence the development of the binned kernel estimator is required. The general framework for binning rule and the resulting binned kernel estimator have been studied by some authors. In this paper we deal with another kind of binning rule, mean-centered binning, which is not included in the general framework for binning. We investigate the asymptotic properties of the mean-centered binned kernel density estimator. We also do the simulation study for the comparison with simple binned kernel estimator.
목차
1. Introduction
2. Binned kernel density estimators
3. Accuracy of mean-centered binned kernel density estimator
4. Concluding remarks
References
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
