- 영문명
- An Instance Segmentation using Object Center Masks
- 발행기관
- 한국스마트미디어학회
- 저자명
- 이종혁(Jong Hyeok Lee) 김형석(Hyong Suk Kim))
- 간행물 정보
- 『스마트미디어저널』Vol9, No.2, 9~15쪽, 전체 7쪽
- 주제분류
- 공학 > 컴퓨터학
- 파일형태
- 발행일자
- 2020.06.30

국문 초록
본 논문에서는 새롭게 제안하는 Multi-Path Encoder-Decoder 의 구조를 바탕으로 두개의 가지로 구성된 심층신경망을 통해서 영상 이미지에서 물체를 하나의 객체 단위로 분할 검출하는 방법을 제안하였다. 각 가지는 중심점 검출 가지(Dot branch), 객체 분할 가지(Segmentation branch)라 하고 중심점 검출 가지는 이미지로부터 각 객체의 중심점을 찾는 역할을 수행하고, 객체 분할 가지는 각 객체의 영역을 이미지로부터 분할하는 역할을 수행한다. 실험에서는 CVPPP 식물 이미지의 나뭇잎을 각각 구분하도록 학습 하였으며 중심점 검출 가지는 각 나뭇잎의 중심점들을 찾아내고, 객체 분할 가지는 원본 이미지와 찾아낸 중심점 이미지를 통하여 각 중심점에 해당하는 나뭇잎의 픽셀 분할 영역을 최종적으로 예측하게 된다. 기존의 객체 분할에서는 다양한 크기, 위치의 앵커박스를 만들어서 많은 영역(N > 1k)의 물체를 확인해야하는 연산량 문제점 혹은 이미지에서 고정되지 않는 총 객체의 개수를 예측하기 어려웠던 문제가 있었다. 제안한 심층신경망에서는 중심점을 기반으로 객체를 찾아내는 효과적인 방법을 제안하였다.
영문 초록
In this paper, we propose a network model composed of Multi path Encoder-Decoder branches that can recognize each instance from the image. The network has two branches, Dot branch and Segmentation branch for finding the center point of each instance and for recognizing area of the instance, respectively. In the experiment, the CVPPP dataset was studied to distinguish leaves from each other, and the center point detection branch(Dot branch) found the center points of each leaf, and the object segmentation branch(Segmentation branch) finally predicted the pixel area of each leaf corresponding to each center point. In the existing segmentation methods, there were problems of finding various sizes and positions of anchor boxes (N > 1k) for checking objects. Also, there were difficulties of estimating the number of undefined instances per image. In the proposed network, an effective method finding instances based on their center points is proposed.
목차
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안한 방법
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
