학술논문
GENERALIZED WEYL S THEOREM FOR ALGEBRAICALLY k-QUASI-PARANORMAL OPERATORS
이용수 2
- 영문명
- 발행기관
- 충청수학회
- 저자명
- D. Senthilkumar P. Maheswari Naik N. Sivakumar
- 간행물 정보
- 『Journal of the Chungcheong Mathematical Society』Volume 25, No. 4, 655~668쪽, 전체 14쪽
- 주제분류
- 자연과학 > 자연과학일반
- 파일형태
- 발행일자
- 2012.11.30

국문 초록
영문 초록
An operator T 2 B(H) is said to be k-quasi-paranormal operator if kTk+1xk2 · kTk+2xkkTkxk for every x 2 H, k is a natu-
ral number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of k-quasi-paranormal op- erators which is related to the paranormal operators, we show that every algebraically k-quasi-paranormal operator has Bishop s prop-
erty (¯), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl s theorem holds for f(T) for every f 2 H(¾(T)); (ii) generalized a - Browder s
theorem holds for f(S) for every S Á T and f 2 H(¾(S)); (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.
목차
1. Introduction
2. On k - quasi - paranormal operators
3. Generalized Weyl s Theorem for algebraically k-quasi- paranormal operators
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
