- 영문명
- Dimensionality Reduction in Speech Recognition by Principal Component Analysis
- 발행기관
- 한국전자통신학회
- 저자명
- 이창영(Chang-Young Lee)
- 간행물 정보
- 『한국전자통신학회 논문지』제8권 제9호, 1229~1305쪽, 전체 77쪽
- 주제분류
- 공학 > 전자/정보통신공학
- 파일형태
- 발행일자
- 2013.09.30
국문 초록
이 논문에서 우리는 MFCC 특징벡터의 차원 저감을 통해 음성 인식에서의 계산량을 줄이는 방법을 조사한다. 특징벡터의 특성분해는 벡터의 성분을 분산의 크기에 따라 배치되도록 선형 변환 시켜준다. 첫 번째 성분은 가장 큰 분산을 가져서 패턴 분류에서 가장 중요한 역할을 한다. 따라서, 분산이 작은 성분들을 제외시키는 차원 저감을 통하여, 계산량을 줄이면서 동시에 음성 인식 성능을 저하시키지 않는 방법을 생각할 수 있다. 실험 결과, MFCC 특징벡터의 성분을 절반 정도로 줄여도 음성인식 오류율에 큰 악영향이 없음이 확인되었다
영문 초록
In this paper, we investigate a method of reducing the computational cost in speech recognition by dimensionality reduction of MFCC feature vectors. Eigendecomposition of the feature vectors renders linear transformation of the vectors in such a way that puts the vector components in order of variances. The first component has the largest variance and hence serves as the most important one in relevant pattern classification. Therefore, we might consider a method of reducing the computational cost and achieving no degradation of the recognition performance at the same time by dimensionality reduction through exclusion of the least-variance components. Experimental results show that the MFCC components might be reduced by about half without significant adverse effect on the recognition error rate.
목차
I. Introduction
II. Principal Component Analysis
III. Reducing MFCC Orders with PCA
IV. Experimental Results and Discussion
V. Conclusion
References
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!