- 영문명
- Randomized Bagging for Bankruptcy Prediction
- 발행기관
- 한국IT서비스학회
- 저자명
- 민성환(Sung-Hwan Min)
- 간행물 정보
- 『한국IT서비스학회지』한국IT서비스학회지 제15권 제1호, 153~166쪽, 전체 14쪽
- 주제분류
- 경제경영 > 경영학
- 파일형태
- 발행일자
- 2016.03.30

국문 초록
영문 초록
Ensemble classification is an approach that combines individually trained classifiers in order to improve prediction
accuracy over individual classifiers. Ensemble techniques have been shown to be very effective in improving the
generalization ability of the classifier. But base classifiers need to be as accurate and diverse as possible in order
to enhance the generalization abilities of an ensemble model. Bagging is one of the most popular ensemble methods.
In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset.
Base classifiers are trained on the different bootstrap samples. In this study we proposed a new bagging variant
ensemble model, Randomized Bagging (RBagging) for improving the standard bagging ensemble model. The proposed model was applied to the bankruptcy prediction problem using a real data set and the results were compared with those of the other models. The experimental results showed that the proposed model outperformed the standard bagging model.
목차
1. 서 론
2. 재무 부실화 예측 모형
3. 연구 모형
4. 실험 설계
5. 실험 결과
6. 결 론
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
