- 영문명
- Elasto-Plastic Analysis Using the Generalized Finite Element Method with Global-Local Enrichment Functions
- 발행기관
- 한국방재학회
- 저자명
- 한소정 김대진 이창준 Han, So Jeong Kim, Dae Jin Lee, Chang Joon
- 간행물 정보
- 『2. 한국방재학회 논문집』12권1호, 17~22쪽, 전체 6쪽
- 주제분류
- 공학 > 기타공학
- 파일형태
- 발행일자
- 2012.02.28

국문 초록
본 논문에서는 국부적으로 비선형 거동을 보이는 고전적인 $J_2$ 소성흐름 이론에 근거한 탄소성 문제의 해를 효율적으로 구하기 위해 전체-국부 확장함수를 지닌 일반유한요소법을 제안한다. 제안된 기법은 비선형 거동을 보이는 영역을 포함하는 국부문제의 비선형 해를 구하고 이를 일반유한요소법의 단위 오목 분할의 개념을 통해 전체 문제의 해 공간을 확장하는데 이용한다. 이는 적은 계산량으로 복잡한 탄소성문제의 정확한 해를 얻는 것을 가능하게 하며 기법의 강건성과 정확성을 입증하기 위한 수치해석 예제가 다루어진다.
영문 초록
This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional elasto-plastic problems. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. A three-dimensional nonlinear problem based on the rate-independent $J_2$ plasticity theory with isotropic hardening is solved using the proposed procedure to demonstrate its robustness and accuracy.
목차
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
