본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Evaluating the Effectiveness of Image Resizing Algorithms for CNN-Based Fish Disease Classification

이용수  10

영문명
발행기관
전남대학교 수산과학연구소
저자명
Dae-Hyon KIM
간행물 정보
『수산과학연구소 논문집』제33권 제2호, 85~91쪽, 전체 7쪽
주제분류
농수해양 > 수산학
파일형태
PDF
발행일자
2024.12.31
무료

구매일시로부터 72시간 이내에 다운로드 가능합니다.
이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다.

1:1 문의
논문 표지

국문 초록

The rapid growth of aquaculture has made the accurate diagnosis of fish diseases a critical challenge, with the potential for significant economic losses. This study evaluates the effectiveness of various image resizing algorithms in the context of convolutional neural network (CNN)-based fish disease classification. The performance of six resizing methods, including bilinear, Gaussian, and Hamming filters, applied in both one-step and two-step approaches, was examined across 30 experiments. The analysis focused on prediction accuracy, error rates, and variance. The results indicate that for bilinear and Gaussian algorithms, the two-step resizing methods generally outperformed the one-step approaches. In contrast, the Hamming resizing algorithm showed superior results with the one-step method. Notably, the one-step Hamming approach achieved the highest average prediction accuracy at 93.4% across 30 trials with varying random initializations. These findings suggest that selecting the appropriate image resizing technique is crucial for enhancing the accuracy of CNN-based models in fish disease classification.

영문 초록

목차

Introduction
Research Methodology
Research Results
Conclusions
References

키워드

해당간행물 수록 논문

참고문헌

교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Dae-Hyon KIM. (2024).Evaluating the Effectiveness of Image Resizing Algorithms for CNN-Based Fish Disease Classification. 수산과학연구소 논문집, 33 (2), 85-91

MLA

Dae-Hyon KIM. "Evaluating the Effectiveness of Image Resizing Algorithms for CNN-Based Fish Disease Classification." 수산과학연구소 논문집, 33.2(2024): 85-91

결제완료
e캐시 원 결제 계속 하시겠습니까?
교보 e캐시 간편 결제