파이썬을 이용한 빅데이터 분석
2025년 07월 01일 출간
국내도서 : 2018년 10월 20일 출간
- eBook 상품 정보
- 파일 정보 PDF (12.98MB)
- ISBN 9791168332416
- 쪽수 373쪽
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
작품소개
이 상품이 속한 분야
1.1 빅데이터 분석 개요
1.2 데이터 분석을 위해 필요한 역량
1.3 이 책의 구성
CHAPTER 2 기계학습을 이용한 데이터분석
2.1 기계학습(Machine Learning) 소개
2.1.1 기계학습
2.1.2 기계학습 기술
2.1.3 기계학습을 활용한 데이터 분석
2.2 예측모델 성능 평가
2.2.1 데이터 셋 구성을 통한 검증 방법
2.3 데이터를 사용한 실습
2.3.1 Scikit Learn 제공 Toy Data를 사용한 실습
CHAPTER 3 선형회귀분석을 이용한 데이터 분석
3.1 단일선형회귀분석
3.1.1 단일선형회귀분석이란?
3.1.2 단일선형회귀모델 소개
3.1.3 적합도 검증
3.1.4 성능평가
3.1.5 단일선형회귀분석 실습 ?Basic 1
3.1.6 단일선형회귀분석 실습 ?Basic 2
3.2 다중선형회귀분석
3.2.1 다중선형회귀분석이란?
3.2.2 적합도 검증
3.2.3 다중선형회귀분석 실습 ?Basic 1
3.2.4 다중선형회귀분석 실습 ?Basic 2
CHAPTER 4 트리를 이용한 데이터 분석
4.1 의사결정 트리를 이용한 데이터 분석
4.1.1 의사결정 트리(Decision Tree)란?
4.1.2 의사결정 트리 구성요소
4.1.3 Decision Tree 분석과정
4.1.4 예제를 이용한 의사결정 트리 동작 과정
4.1.5 의사결정 트리 분리기준 (Split Criterion)
4.1.6 예제를 이용한 의사결정 트리 실습
4.2 랜덤 포레스트(Random Forest)를 이용한 데이터 분석
4.2.1 랜덤 포레스트 소개
4.2.2 랜덤 포레스트 이론
4.2.3 Iris 데이터를 이용해 간단한 랜덤 포레스트 구현
CHAPTER 5 인공신경망을 이용한 데이터분석
5.1 인공신경망(Artificial Neural Network : ANN)
5.1.1 인공신경망 개념
5.1.2 인공신경망 종류 ?단일계층신경망
5.2 인공신경망을 이용한 데이터 분석
5.2.1 인공신경망의 종류 ?다층신경망
5.2.2 예제를 이용한 인공신경망 실습
CHAPTER 6 Support Vector Machine
6.1 Support Vector Machine (SVM) 개요
6.1.1 SVM개념
6.2 Support Vector Machine 실습
6.2.1 Python package 로드
6.2.2 Iris data set 로드
6.2.3 Iris data set 정보 확인
6.2.4 데이터 학습
6.2.5 데이터 시각화 전처리
6.2.6 데이터 시각화 및 성능 측정
6.3 SVM의 Parameter 조정하는 방법 실습
CHAPTER 7 Naive Bayes
7.1 Naive Bayes 개념
7.1.1 Naive Bayes란?
7.1.2 베이즈 정리(Bayes theorem)
7.1.3 조건부 확률(Conditional Probability)
7.1.4 라플라스 스무딩 (Laplace Smoothing)
7.1.5 Log 변환
7.2 예제를 이용한 Naive Bayes
7.3 예제를 이용한 Naive Bayes Python 코드 실습
7.3.1 필요한 package 로드
7.3.2 예제 데이터 로드
7.3.3 데이터 전처리
7.3.4 데이터 분리
7.3.5 Train, Test Set 구성
7.3.6 나이브 베이즈 모델 생성
7.3.7 클래스 예측
7.3.8 예측 클래스 확인
7.3.9 분류 성능 측정
CHAPTER 8 영문 텍스트 데이터 분석
8.1 텍스트 분석
8.1.1 텍스트 분석
8.1.2 토큰화
8.1.3 어간추출
8.1.4 형태소 분석
8.1.5 정보 추출
8.1.6 문서 분류
8.1.7 감성 분석
8.2 영문 텍스트 데이터 분석
8.2.1 텍스트 분석
8.2.2 영어 뉴스 데이터 수집
8.2.3 텍스트 데이터 전처리
8.2.4 Word Cloud
8.2.5 특징 값 추출
8.2.6 뉴스 분류
CHAPTER 9 한국어 텍스트 데이터 분류
9.1 한국어 텍스트 데이터 분류
9.1.1 한국어 텍스트 데이터 분류
9.1.2 데이터 셋과 특징 값 추출
9.1.3 분류
CHAPTER 10 기타 기계학습을 이용한 데이터 분석
10.1 K-means
10.1.1 K-means 알고리즘이란?
10.1.2 K-means 클러스터링 예제
10.1.3 Scikit-learn(Sklearn) 패키지 소개
10.1.4 K-means 실습
10.2 K-Nearest Neighbors(KNN)
10.2.1 K-Nearest Neighbors (KNN) 알고리즘이란?
10.2.2 Scikit-learn(Sklearn) 패키지 소개
10.2.3 KNN 실습
CHAPTER 11 PCA와 LDA
11.1 차원 축소
11.1.1 차원 (Dimensionality)
11.1.2 차원의 저주 (Curse of Dimensionality)
11.1.3 차원 축소 방법
11.2 PCA
11.2.1 PCA
11.2.2 고유벡터(Eigenvectors)와 고유값(Eigenvalues)
11.2.3 PCA를 사용한 데이터 재구성
11.3 LDA
11.3.1 LDA
11.4 데이터를 사용한 실습
11.4.1 필요한 패키지 import
11.4.2 원본 데이터 확인
11.4.3 PCA
11.4.4 LDA
11.4.5 원본, PCA, LDA 시각화 결과 비교
작가정보
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
